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Abstract—The study purpose was to evaluate the use of computer-automated algorithms as a replacement for sub-
jective, visual determination of muscle contraction onset using M-mode ultrasonography. Biceps and quadriceps
contraction images were analyzed visually and with three different classes of algorithms: pixel standard deviation
(SD), high-pass filter and Teager Kaiser energy operator transformation. Algorithmic parameters and muscle
onset threshold criteria were systematically varied within each class of algorithm. Linear relationships and agree-
ments between computed and visual muscle onset were calculated. The top algorithms were high-pass filtered with
a 30 Hz cutoff frequency and 20 SD above baseline, Teager Kaiser energy operator transformation with a 1200
absolute SD above baseline and SD at 10% pixel deviation with intra-class correlation coefficients (mean differ-
ence) of 0.74 (37.7 ms), 0.80 (61.8 ms) and 0.72 (109.8 ms), respectively. The results suggest that computer auto-
mated determination using high-pass filtering is a potential objective alternative to visual determination in
human movement science. (E-mail: andrew.tweedell.ctr@mail.mil) Published by Elsevier Inc. on behalf of
World Federation for Ultrasound in Medicine & Biology.

Key Words: Muscle contraction, Visual determination, Agreement.
INTRODUCTION

In clinical biomechanics and human movement research,
the timing of muscle contraction, or muscle onset (MO),
is often used to examine the temporal relationship
between external and internal events (e.g., electrome-
chanical delay [Begovic et al. 2014], agonist/antagonist
co-activation [Hortobagyi et al. 2009] or during the gait
cycle [Powers et al. 1996]). Traditionally, surface and
intramuscular electromyography (EMG) is used to mea-
sure MO; however, intramuscular EMG is an invasive
procedure and surface EMG is a diffuse measure highly
influenced by the activity of superficial muscle fibers
(Farina et al. 2004).

The limitations of EMG have led many researchers
to use musculoskeletal ultrasonography (US) to observe
the mechanical displacement of deep muscles and asso-
ciate this with muscle contraction (Begovic et al. 2014;
Hodges et al. 2003; Pulkovski et al. 2008; Vasseljen
et al. 2009). In US, transmitted and reflected ultrasonic
waves (f $20 kHz) create a backscattering of waves
ddress correspondence to: Andrew J. Tweedell, 459 Mulberry
Road, Aberdeen Proving Ground, MD 21005, USA. E-mail:
.tweedell.ctr@mail.mil
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resulting in a 2-D array of gray-scale values producing
a typical sonogram image. In M-mode US, this image is
updated hundreds of times per second to produce a time
series of tissue displacement underneath the US probe.
Processing of M-mode images for MO determination is
often accomplished by leveraging techniques commonly
applied to the EMG signal, such as high-pass (HP)
filtering to remove artifact (Vasseljen et al. 2006, 2009).
In most cases, the gold-standard method for MO determi-
nation is visual analysis, where investigators determine
the time point of MO (Vasseljen et al. 2006, 2009;
Westad et al. 2010). Although each study has reported
good reliability for visual measurements (Pulkovski
et al. 2008; Vasseljen et al. 2006, 2009), this method is
time consuming, is highly dependent on the experience
of investigators and may not be generalizable.

Alternatively, M-mode images can be processed via
computer algorithms to detect when there is a change in
pixel values (indicating movement initiation) across
time. For example, Dieterich et al. (2015) developed a
process using a method previously applied to EMG (Li
et al. 2007; Solnik et al. 2010) by pre-conditioning US
gray-scale values with the Teager–Kaiser energy operator
(TKEO) (Kaiser 1990, 1993) and setting specified
standard deviation threshold criteria for MO. The
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subsequent US-derived MO times were highly correlated
(intra-class correlation coefficients [ICCs] 5 0.73–0.93)
with simultaneously recorded EMG-derived MO of the
gluteus medius and gluteus minimus. Such automated
detection techniques have the potential to replace tedious
visual analyses. However, studies attempting to develop
US-derived MO, whether visual or automated, often
compare it with EMG-derived MO (Dieterich et al.
2015; Mannion et al. 2008; Pulkovski et al. 2008;
Vasseljen et al. 2006, 2009). Given that EMG and
ultrasound are two physiologically distinct measures,
assuming that EMG can act as external validation of
ultrasound-determined MO may not be appropriate
(Vasseljen et al. 2006). To date, there has been no attempt
to validate automated USMO techniques against the gold
standard for US MO determination, visual analysis.

A reliable method to effectively measure MO using
US, independent of investigator bias, could potentially be
useful to clinicians and researchers investigating muscu-
loskeletal function. Computer-determined MO, as a
method, provides a speed and reliability advantage over
visual analysis. The primary aim of this study was to
investigate computer-based MO algorithms as a viable
alternative to visual determination using M-mode US
for both simple and complex muscles. The secondary
aim was to characterize and compare the reliability of
visually determined MO using raw M-mode images or
a time-series waveform of pixel data.
METHODS

Thirteen men and five women (aged 22–54 y) with
no neurologic disorders or musculoskeletal injuries
were recruited for this study and subsequently signed
an informed consent document. The study protocol was
approved by the U.S. Army Research Laboratory institu-
tional review board, and all participants gave their
informed consent in accordance with the Helsinki
Declaration.

Three separate contractions for both knee extension
and elbow flexion with 2.3 kg of resistance were per-
formed in a seated upright position. Tasks were per-
formed at a self-selected moderate speed on the verbal
command of an investigator. Ultrasonic data were
collected with a Sonosite Edge Ultrasound System (FUJI-
FILM SonoSite, Bothell, WA, USA) using a multifre-
quency linear array transducer (HFL38x, 13–6 MHz,
6 cm, SonoSite). The same trained investigator (A.J.T.)
performed all US assessments.

The ultrasound transducer was placed on the muscle
belly parallel to the underlying muscle fibers of the vastus
lateralis and biceps brachii for knee extension and elbow
flexion, respectively. Image depth and overall gain were
optimized for each participant (2–6 cm) to account for
variation in subcutaneous fat thickness between partici-
pants and to ensure muscle tissue was captured for image
analysis. After visualization, the US system was set to
M-mode at a temporal resolution of 200 Hz. This is equiv-
alent to a single US beam recording the image slice of the
underlying fat, muscle and tendon architecture once
every 5 ms to produce a time series image (Fig. 1a).
The 8-bit gray-scale pixel data (0–255 arbitrary units
[a.u.]) were encoded as a matrix of 512 columns by 250
rows of pixels and exported by USB as a DICOM JPEG
to the image processing program ImageJ (Version 1.47,
National Institutes of Health, Bethesda, MD, USA) and
a customized R language software program (R Develop-
ment Core Team 2015) using RStudio (RStudio, Boston,
MA, USA) and associated packages (Gordon and Lumley
2016; Kienzle et al. 2014; Lehnert 2014; Revelle 2016;
Vanderkam and Allaire 2015; Whitcher et al. 2011) for
processing. Each column of the matrix represents a
single time point measure (at 5-ms intervals), and each
row represents a time series of the architecture at that spe-
cific depth.

Visual determination
Visual determination of muscle onset was accom-

plished with two separate methods. Each method em-
ployed a blinded analysis by the same two independent
investigators (C.A.H. and M.S.T.). Note that the trained
US operator (A.J.T.) was not among the investigators per-
forming the blinded analysis. For the first method, the in-
vestigators analyzed the raw M-mode sonogram (Fig. 1a)
in ImageJ to identify the initial instance inwhich therewas
a clear indication of high-energymotion, defined as a gen-
eral perturbation in pixel coloration. This method had not
previously been attempted. For the second method, the
pixel matrix was imported into a custom R computer pro-
gram and transformedwith anHPfilter, as previously used
by Vasseljen et al. (2006, 2009). First, each row of the
pixel matrix was transformed using a zero-lag fourth-or-
der HP (forward–backward second-order Butterworth)
IIR filter with a 30-Hz cutoff frequency. The root mean
square (RMS) value of all transformed gray-scale pixel
values within each column was then calculated and
plotted as a graphical time series (Fig. 1b). The investiga-
tors were asked to identify the first instance in the graph in
which there is a clear deviation in RMS from baseline.

Computerized algorithms
Computed MO was determined by three separate

classes of algorithms using RStudio: (i) a novel standard
deviation (SD) technique, (ii) an HP filtering technique
and (iii) a TKEO pre-conditioning technique. An iterative
analysis of each class was run with systematically varying
parameters for MO determination. The latency (in ms)
between the determined onset and the beginning of the



Fig. 1. (a) Example of a raw M-mode ultrasound image for muscle (biceps brachii) contraction onset. Onset times de-
tected from each observer and the top performing algorithm. Standard deviation (SD) 10%, high-pass filtering (HP)
30 Hz 2 SD and Teager–Kaiser energy operator (TKEO) 1200 algorithms are noted within the M-mode trace. (b) Graph
of high pass-filtered root mean square waveform of M-mode ultrasound image. Onset times derived from graph manually

(observers 1 and 2) as well as algorithmically (HP 30 Hz 20 SD) are annotated.
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M-mode trace was subsequently used to compare the time
to onset between algorithms.

Standard deviation. The SD technique included
calculation of the z-scores of pixels within each row, as
indicators of variation in the gray-scale values over
time. Then the percentage of pixels in each column
(i.e., time point) in which the z-score was 61.96 was
calculated.MOwas determined as the point when the per-
centage was greater than 5%, 10%, and 15% (referred to
as SD 5%, SD 10% and SD 15%, respectively). This tech-
nique allows for the relative quantification and compari-
son of the standardized gray-scale values that lie outside
the 95th percentile of a normal distribution for each time
point.

High-pass filtering. The process for HP filtering and
RMS was described under Visual Determination; for the
algorithmic method, MO was chosen computationally
instead of by investigators. Filtering parameters and
threshold criteria were varied between 5-, 15- and
30-Hz cutoff frequencies with 5, 10 and 20 SD above
baseline (referred to as ‘‘HP’’ with respective cutoff
frequency and criteria, e.g., HP 15 Hz 10 SD).

TKEO pre-conditioning. For TKEO pre-conditioning
(Li et al. 2007; Solnik et al. 2010), each row of the pixel
matrix was transformed using the TKEO formula (Kaiser
1990; Kaiser 1993). The SD of each column then was
calculated. The threshold criteria for MO were
determined by previous studies as having an absolute SD
of 800 or 1200 a.u. (Dieterich et al. 2015). (referred to as
TKEO 800 and TKEO 1200, respectively). The SD of
each column indicates variation in energy levels between
time points.
Statistics
The systematic variability of visual determination

between investigators was evaluated using the intra-
class correlation coefficient (ICC3,1) and standard error
of measurement (SEM). The ICC3,1 model measures the
systematic error between only investigators of interest
so the results can be used for comparison between other



Fig. 2. Hierarchical cluster analysis dendrogram visually de-
picting relative similarity between determination methods
with $95% detection rates. The visual determination method
used as gold standard for comparison is highlighted by a red

box.
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methods based on a single measurement taken by each
investigator (Shrout and Fleiss 1979). The visual determi-
nation method that was considered more reliable (i.e.,
higher ICC3,1 value) was chosen as the ‘‘gold standard.’’
The mean MO value of the two investigators’ measure-
ments was used for further statistical analysis.

Given the large number of MO algorithms, poorly
performing algorithms were systematically eliminated
from further evaluation. First, algorithms that detected
muscle onset in less than 95% of trials were removed.
Second, a hierarchical cluster analysis was performed
on the remaining algorithms. This analysis attempts a
stepwise agglomeration of similar onset times into un-
known clusters by their proximity to each other based
on the Euclidean distance between them. This produces
a dendrogram depicting the relative similarity between
algorithms, with connected branches of the graph repre-
senting commonality. Cluster analyses are widely em-
ployed in fields such as genomics for microarray
analyses to uncover common traits in very large data
sets (Kaufman and Rousseeuw 2005). The three algo-
rithms with the closest proximity (i.e., highest similarity)
to the gold-standard visual determination on the dendro-
gram were selected for further evaluation. Third, the level
of agreement between the chosen algorithms and visual
determination was assessed with mean differences
(bias) and precision of the estimated mean differences
(95% confidence interval [CI]) using the Bland–Altman
method (Bland and Altman 1986). Any missing values
(i.e., no onset was detected) were treated with a pairwise
deletion. The ICC3,1 values were then calculated using
the R statistical package ‘‘psych’’ in RStudio (Revelle
2016). Additionally, the ranges of differences observed
are reported for each of the top three algorithms.
RESULTS

Fifty-four and 53 trials were performed for vastus
lateralis and biceps brachii, respectively. Visual determi-
nation using the filtering method produced greater ICC3,1

values (0.99, SEM5 15.3 ms) between investigators than
use of the raw image (ICC3,1 5 0.91, SEM 5 37.0 ms).
Therefore, visual MO times from HP filtering were
used for further analysis. Similarity between this visual
determination and all computer algorithms with $95%
detection rates are displayed in the dendrogram in
Figure 2.

Based on their relative commonality and proximity to
‘‘visual’’ MO according to the cluster analysis (Fig. 2), the
top three algorithms chosen for further evaluation were
HP 30 Hz 20 SD, TKEO 1200 and SD 10%, with mean
differences (ms) and 95% CIs of 37.7 (11.7–63.7),
61.8 (39.6–83.9) and 109.8 (85.3–134.4), respectively.
Bland–Altman plots were constructed to visually assess
the agreement between visual determination and each algo-
rithm (Fig. 3). A forest plot of themean differences and 95%
CIs is provided in Figure 4 along with ICC3,1values and
ranges of differences observed.

DISCUSSION

In an effort to replace EMG with US as the main
method of MO determination, previous studies often
compared onset timing between the two. This is
misleading because they quantify different physiologic
phenomena. Theoretically, electrical activation should al-
ways precede muscle fiber movement, but many studies
report trials in which US-derived MO occurred before
MO derived from EMG (Mannion et al. 2008;
Pulkovski et al. 2008; Vasseljen et al. 2006, 2009).
Vasseljen et al. (2006) hypothesize that electrical activa-
tion of a muscle measured by EMG does not necessarily
equate to muscle movement because nearby, earlier-
activated muscles may cause passive motion to propagate
through the US field of vision. This makes validation of
any automated US MO technique against EMG MO
potentially problematic, especially when attempting to
distinguish between electrical and mechanical events
(i.e., electromechanical delay). An appropriate compari-
son between methods using the same instrumentation
(US vs. US) is required to determine the accuracy of
any automated techniques. This is the first study to
compare automated US methods against visual analyses
for determining the point of muscle contraction onset
in vivo. It is also a step toward a standardized method
of US MO determination.

The results indicate that reasonable inter-method
reliability (ICC3,1values 5 0.72–0.80) can be achieved
with algorithmically computed onset using M-mode
US. Taking both muscles into account, the HP filtering al-
gorithm with a 30 Hz cutoff frequency and 20 SD
threshold produced the lowest bias (37.7 ms) with a



Fig. 3. Bland–Altman plots comparing muscle onset detection agreement for visual and computer-based algorithms in
two muscles (biceps brachii and vastus lateralis). The time difference between onsets detected by visual and algorithmic
analysis for each trial (y-axis) is plotted against the mean onset time of the visual and algorithmic analyses. Blue lines
indicate the mean difference (bias) and limits of agreement for all trials. Green dashed lines indicate precision, or the
95% confidence intervals for the mean difference. As each trial is being compared against itself, the difference in time

to onset between trials (data points) is trivial. This makes horizontal spread (i.e., x-axis) inconsequential.
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precision (11.7–63.7 ms, 95% CI) comparable to those of
the others, making it the most viable option. Additionally,
visual inspection of the Bland–Altman plots (Fig. 3) re-
veals that the distribution of data points is similar be-
tween muscles for each algorithm, possibly indicating
that MO measurements are not affected by differences
in muscles. According to the agreement analysis, there
is a statistical bias for algorithmic detection to occur after
visual detection, as evidenced by the positivemean differ-
ences seen in Figures 3 and 4. This positive bias may be
due to the algorithms themselves or to the specific
threshold criteria set a priori for each algorithm. Each
algorithm’s parameters were chosen based on previous
methods using US or EMG. Further adjustment of these
parameters may yield better or worse results, but
lowering the thresholds will likely increase the chances
of premature onset detection. Additionally, although the
Fig. 4. Forest plot of mean differences and 95% confidence in-
tervals for mean differences for the top three algorithms. Gray
line on plot indicates ‘‘0’’ mean difference (i.e., no bias).
Intra-class correlation coefficient (ICC) and maximal error

values are also included.
good to excellent ICC values (Fig. 4) indicate there is
consistency between visual and algorithmic MO, each al-
gorithm experienced a large range of differences from vi-
sual. For instance, the SD 10% algorithm reports a
maximal error (maximum difference observed between
algorithm and visual) of almost a second, whereas HP
30 Hz 20 SD and TKEO 1200 report 737.5 and
592.5 ms, respectively. These maximal errors may repre-
sent programmatic ‘‘edge cases’’ where the algorithm re-
turns results that are not representative of typical
performance and are largely unavoidable when imple-
menting algorithms.

For measures that require high-temporal-resolution
US to distinguish specific events, such as electromechan-
ical delay (Begovic et al. 2014; Nordez et al. 2009), the
bias observed in this study may not be acceptable for
computer algorithms to replace visual determination for
MO as of yet. As a limitation, the temporal resolution for
M-mode in the present study consisted of 5 ms (200 Hz),
whereas others using US for MO report ,2 ms
(,500 Hz) (Begovic et al. 2014; Nordez et al. 2009;
Vasseljen et al. 2006, 2009). It is expected that with
higher refresh rates, the algorithms may more precisely
predict onset. However, temporal resolution appears to
have little influence on manual reproducibility because
both visual methods for MO had excellent inter-rater reli-
ability, with the HP filteringmethod producing ICC values
similar to those of previous studies (Vasseljen et al. 2006,
2009). It should be reiterated that even with excellent
reliabilities and narrow SEMs between investigators
(15.3 and 37.0 ms), visual analysis is a subjective
measure with possible human error. Because the purpose
of the present study was to develop an objective
replacement for visual analysis, it is assumed any biases



Algorithmic determination of muscle movement d A. J. TWEEDELL et al. 1075
reported were due to the algorithms and were not errors in
visual determination. An exampleM-mode tracewithMO
time points from each algorithm and observer highlighted
is presented in Figure 1.

Clinically, the absolute reliability and repeatability
for algorithmic determination methods make them ideal
for studies that implement repeated measures. These ad-
vantages offer potential for many experimental para-
digms, from tracking performance (e.g., sports training
or rehabilitation) to evaluating man-machine control sys-
tems (e.g., prosthetics). For a clinical study example,
musculoskeletal function can be assessed pre- and post-
orthopedic surgery using these automated US techniques.
In addition, advanced US systems are now equipped with
Doppler imaging which can quantify tissue velocities
(Pulkovski et al. 2008; Westad et al. 2010). This type of
ultrasound technology may require new or different
methods and algorithms to determine MO.

CONCLUSIONS

At this time, visual determination using HP filtering
remains the most effective method for overall MO deter-
mination; however, this study provides evidence that
algorithmic detection using HP filtering is a viable alter-
native that offers researchers a more objective measure
for muscle movement onset.

Acknowledgments—The authors thank all patients who participated in
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